Numerical approximations of the 10-moment Gaussian closure

نویسنده

  • Christophe Berthon
چکیده

We propose a numerical scheme to approximate the weak solutions of the 10-moment Gaussian closure. The moment Gaussian closure for gas dynamics is governed by a conservative hyperbolic system supplemented by entropy inequalities whose solutions satisfy positiveness of density and tensorial pressure. We consider a Suliciu-type relaxation numerical scheme to approximate the solutions. These methods are proved to satisfy all the expected positiveness properties and all the discrete entropy inequalities. The scheme is illustrated by several numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Discontinuous Galerkin Approximations of Boltzmann Moment Systems With Levermore Closure

This work considers the discontinuous Galerkin (DG) finite element discretization of first-order systems of conservation laws derivable as moments of the kinetic Boltzmann equation with Levermore (1996) closure. Using standard energy analysis techniques, a new class of energy stable numerical flux functions are devised for the DG discretization of Boltzmann moment systems. Simplified energy sta...

متن کامل

Numerical Modeling of Micron-Scale Flows Using the Gaussian Moment Closure

The application of the Gaussian moment closure to micron-scale flows is considered. The mathematical formulation of the closure is reviewed as well as an extension to allow for diatomic gases and treatment for solid wall boundaries. A parallel upwind finite-volume scheme with adaptive mesh refinement (AMR) using Roe and HLLE-type flux functions is described for solving the hyperbolic system of ...

متن کامل

Diffusive Corrections to PN Approximations

In this paper, we investigate moment methods from a general point of view using an operator notation. This theoretical approach lets us explore the moment closure problem in more detail. This gives rise to a new idea, proposed in [14, 15], of how to improve the well-known PN approximations. We systematically develop a diffusive correction to the PN equations from the operator formulation — the ...

متن کامل

Higher Order Mixed-Moment Approximations for the Fokker-Planck Equation in One Space Dimension

We study mixed-moment models (full zeroth moment, half higher moments) for a Fokker–Planck equation in one space dimension. Mixed-moment minimum-entropy models are known to overcome the zero net-flux problem of full-moment minimum-entropy Mn models. A realizability theory for these mixed moments of arbitrary order is derived, as well as a new closure, which we refer to as Kershaw closure. They ...

متن کامل

Statistical analysis of neural data: Maximum a posteriori techniques for decoding spike trains

2 Maximum a posteriori neural decoding 3 2.1 Gaussian approximations to the posterior p(~x|D) are tractable and useful . . 4 2.1.1 Moment-matching provides an alternative method for constructing the Gaussian approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 MAP decoding examples: corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006